
PHYS 410 Project 2

Name: Steven Brown
Student Number: 90169772

1 Problem 1 Introduction

In problem one of this project the goal was to solve the one-dimensional time-dependent Schrodinger equation
using the Crank-Nicolson discretization method. The Schrodinger equation is a linear partial differential
equation that governs the wave function of a quantum-mechanical system. This wave function which we will
call ψ is a function that assigns a complex number to each point x at each time t. The parameter V (x, t)
is the potential that represents the environment in which the particle exists. The full one-dimensional
time-dependent equation can be seen below after non-dimensionalization.

iψ(x, t)t = −ψxx + V (x, t)ψ (1)

This equation is to be solved on the domain

0 ≤ x ≤ 1, 0 ≤ t ≤ tmax

subject to initial and boundary conditions

ψ(x, 0) = ψ0(x), ψ(0, t) = ψ(1, t) = 0

It is important to note that the initial data function ψ0(x) can be complex in general, but in the cases we
will consider, it will be real. In the actual solution will also restrict attention to time-independent potentials,
but carry the explicit dependence in the following derivations to emphasize that it is no more difficult to
deal with a time-dependent potential than a time-independent one.

The Crank–Nicolson method is a finite difference method used for numerically solving partial differential
equations and is second-order in time. This method is based on the trapezoidal rule which gives second-order
convergence in time. We can also note that for linear equations, the trapezoidal rule is equivalent to the
implicit midpoint method. The following image is provided to help imagine the discretization scheme.

Note that code snippets will be included in this report but to see the full code and function
descriptions see the .m files submitted.

1

2 Review of Theory & Numerical Approach for Problem 1

2.1 The One-Dimensional Time-Dependent Schrodinger Equation

As stated in the introduction, in this section we will be discussing the one-dimensional time-dependent
Schrodinger equation and some of its useful properties and quantities. For reference, the equation under
analysis is stated below.

iψ(x, t)t = −ψxx + V (x, t)ψ

2.1.1 Useful Quantities

The one-dimensional time-dependent Schrodinger equation has some useful properties and useful quantities
that we will be discussing. We note that ψ can be expressed in terms of its real and imaginary parts, ψRe

and ψIm, respectively as

ψ = ψRe + ψIm

A useful diagnostic quantity is the “running integral”, P (x, t), of the probability density, ρ = |ψ|2 = ψψ∗,
where ∗ denotes the complex conjugate operator. Note that the ρ represents the probability density for the
position of a particle in one dimension.

P (x, t) =

∫ x

0

ψ(x̃, t)ψ∗(x̃, t)dx̃ (2)

Note that if the wave function is properly normalized, then we will have

P (1, t) = 1

because this represents the probability that the particle is found in our entire domain at any point in time,
which is 100%. Even if our quantity is not so normalized (and in our applications there will be no need to
ensure normalization), we should have

P (1, t) = conserved to level of solution error

The quantity
√
ψ = |ψ| is also a useful diagnostic. Additionally, it was found useful to plot the real and

imaginary parts of ψ as well.

A family of exact solutions of (1) can be described by

ψ(x, t) = e−im2π2t sin(mπx) (3)

where m is a positive integer representing the particles mass.

The integral in (2) can be computed to O(h2) using the trapezoidal formula. Recall that if we are given n
approximate values fi at values of x, xi, then the trapezoidal approximation is given by

∫ xn

x1

f(x)dx ≈ 1

2

n−1∑
i=1

(fi + fi+1)(xi+1 − xi) (4)

2

2.1.2 Useful Quantities Implementation

The useful quantities that were previously discussed were implemented with the following code inside the
sch 1d cnṁ script. Note that the indexing was shifted when calculating the probability density matrix in
order to calculate the last value using trapezoidal approximation. This keeps the first value as zero which
makes sense for a ”running integral”.

p s i r e = real (p s i) ;
ps i im = imag(p s i) ;
psimod = sqrt (p s i .∗ conj (p s i)) ;
prob = zeros (nt , nx) ;

% ca l c u l a t e running i n t e g r a l o f the p r o b a b i l i t y d en s i t y
ro = psimod . ˆ 2 ;
for i i = 1 : nt

sum = 0 ;
for j j = 2 : nx

sum = sum + 0.5 ∗ (ro (i i , j j −1) + ro (i i , j j)) ∗ (x (j j) − x (j j −1)) ;
prob (i i , j j) = sum ;

end
end

2.1.3 Initial Conditions and Potentials

Partial differential equations can be very sensitive to initial conditions. These initial conditions create
solution families in different forms of the wave equation. Our potential V (x, t) also effects the behaviour of
the solution. For this problem we will be considering two initial data types and two potential functions. The
two initial data types can be described as exact family and boosted Gaussian respectively.

ψ(x, 0) = sin(mπx) (5)

ψ(x, 0) = eipxe−((x−x0)/δ)
2

(6)

The two potential functions can be described as no potential and rectangular barrier/well.

V (x) = 0 (7)

V (x) =


0 for x ≤ xmin

Vc for xmin ≤ x ≤ xmax

0 for x ≥ xmax

(8)

The terminology “boosted Gaussian” comes from the fact that by pre-multiplying the (real-valued) Gaussian
profile by eipx, we give the wave packet some momentum in the direction of p (which can have either sign).
The constant Vc is positive for a barrier, negative for a well. In this problem, we will not worry about the
fact that the boosted Gaussian profile is incompatible with the boundary conditions. In practice we center
the Gaussian sufficiently far from the boundaries such that the incompatibility is lost in the truncation error.
We always set the wave function to 0 at x = 0 and x = 1, including at the initial time.

2.1.4 Initial Conditions and Potentials Implementation

The input parameters idtype and vtype are integers that select which initial data type and potential type,
respectively, are to be used. Dependent on the type, elements of the associated parameter vector will be
used to define the initial data or potential. Specifically, implementation options as follows:

3

Initial Data Types

1. Exact Family (5): idtype == 0

- idpar(1) = m

2. Boosted Gaussian (6): idtype == 1

- idpar(1) = x0

- idpar(2) = δ

- idpar(3) = p

Potential Types

1. No Potential (7): vtype == 0

2. Rectangular Barrier or Well (8): vtype == 1

- idpar(1) = xmin

- idpar(2) = xmax

- idpar(3) = Vc

The initial conditions and potentials that were previously discussed were implemented with the following
code inside the sch 1d cnṁ script.

% I n i t i a l Data
i f id type == 0

ps i (1 , :) = sin (idpar (1) ∗ pi ∗ x) ;
e l s e i f id type == 1

ps i (1 , :) = exp(1 i ∗ idpar (3)∗ x) .∗ exp(−((x−idpar (1)) / idpar (2)) . ˆ 2) ;
else

fprintf (” I nva l i d idtype ”) ;
return

end

% Po t en t i a l Data
i f vtype == 0

v = zeros (nx , 1) ;
e l s e i f vtype == 1

v = zeros (nx , 1) ;
for idx = 1 : nx

i f vpar (1) <= x(idx) && x(idx) <= vpar (2)
v (idx) = vpar (3) ;

end
end

else
fprintf (” I nva l i d idtype ”) ;
return

end

2.2 Crank-Nicolson Discretization

The Crank–Nicolson method is a finite difference method used for numerically solving partial differential
equations using discretization. We discretize the continuum domain by introducing the democratization

4

level, l, and the ratio of temporal to spatial mesh spacings

λ =
∆t

∆x

We then define the following parameters

nx = 2l + 1

∆x = 2−l

∆t = λ∆x

nt = round(tmax/∆t) + 1

We can apply the Crank-Nicolson discretization approach to (1) and its respective boundary conditions. We
then define the FDA as the combination of a first order explicit scheme and a first order implicit scheme
plugged into (1). This results in

i
ψn+1
j − ψn

j

∆t
= −1

2

(
ψn+1
j+1 − 2ψn+1

j + ψn+1
j−1

∆x2
+
ψn
j+1 − 2ψn

j + ψn
j−1

∆x2

)
+

1

2
V

n+1/2
j (ψn+1

j + ψn
j) (9)

where
j = 2, 3, ..., nx − 1, n = 1, 2, ..., nt − 1

We also defined the boundary conditions as

ψn+1
1 = ψn+1

nx
= 0, n = 1, 2, ..., nt − 1 (10)

ψ1
j = ψ0(xj), j = 1, 2, ..., nx (11)

The solution to this equation can be found using a tri-diagonal system. We first rewrite the above equation
in the form

c+j ψ
n+1
j+1 + c0jψ

n+1
j + c−j ψ

n+1
j−1 = fj

where the different c vectors are the values along the three central diagonals in the sparse matrix. After
rearranging (9) we find

c+j =
1

2∆x2

c0j =
i

∆t
− 1

∆x2
−
V

n+1/2
j

2

c−j =
1

2∆x2
= c+j

fj =
i

∆t
ψn
j − 1

2

(
ψn
j+1 − 2ψn

j + ψn
j−1

∆x2

)
+

1

2
V

n+1/2
j ψn

j

We can use these coefficient vectors to generate a sparse matrix using ”spdiags” and then solve the system
using left division.

5

2.3 Crank-Nicolson Discretization Implementation

The steps for the Crank-Nicolson discretization method previously discussed was implemented with the
following code inside the sch 1d cnṁ script.

% I n i t i a l i z e s t o rage f o r sparse matrix and RHS
dl = zeros (nx , 1) ;
d = zeros (nx , 1) ;
du = zeros (nx , 1) ;
f = zeros (nx , 1) ;

% Set up t r i d i a g o n a l system
dl = 0 .5 / dxˆ2 .∗ ones (nx , 1) ;
d = (1 i / dt − 1 .0 / dxˆ2 − v / 2) .∗ ones (nx , 1) ;
du = dl ;

% Fix up boundary cases
d (1) = 1 . 0 ;
du (2) = 0 . 0 ;
d l (nx−1) = 0 . 0 ;
d (nx) = 1 . 0 ;

% Define sparse matrix
A = spdiags ([d l d du] , −1:1 , nx , nx) ;

% Compute s o l u t i o n us ing CN scheme
for n = 1 : nt−1

% Define RHS of l i n e a r system
f (2 : nx−1) = 1 i ∗ p s i (n , 2 : nx−1) / dt − 0 .5 ∗ (. . .

p s i (n , 1 : nx−2) − 2 ∗ p s i (n , 2 : nx−1) + ps i (n , 3 : nx)) / dxˆ2 . . .
+ 0 .5 ∗ v (2 : nx−1) . ' .∗ p s i (n , 2 : nx−1);

f (1) = 0 . 0 ;
f (nx) = 0 . 0 ;
% Solve system , thus updat ing approximation to next time s t ep
p s i (n+1, :) = A \ f ;

end

2.4 Convergence Testing

Define a level l solution computed using sch 1d cn by ψl. Note that ψl is a function of both the discrete
time and space coordinates. Denote by dψl the quantity defined by

dψl = ψl+1 − ψl

where the data defined by the grid function (array) ψl+1 is 2:1 coarsened in both the time and space
dimensions so that it has the same size as ψl. Then one way we can convergence test is to compute

∥dψl∥2(tn) (12)

where ∥.∥2 denotes the l-2 norm (RMS value) that can be defined as the following for any length-m vector v.

6

∥v∥2 =

√∑m
j=1 |vj |2

m

Observe that for complex numbers, |vj | is the modulus of the number. Note this makes sense because (12)
involves taking spatial norms of the pairwise subtraction of grid functions at two different levels. This results
in a function of the discrete time, tn, on the level-l grid.

Following the development we have seen for solutions of other finite difference equations, we note that since
our FDA is O(h2) (where ∆x = h and ∆t = λh), we expect the solution to be O(h2) accurate, with ψl

following an expansion of the form

ψl(x, t) = ψ(x, t) + h2l e2(x, t) +O(h4l) (13)

where e2(x, t) is some error function. From (13) we can deduce that if we graph re-scaled values of ∥dψl∥2
on a single plot, then convergence is signalled by near-coincidence of the curves, with better agreement as
we go to higher values of l. In particular, for a test with levels

l = lmin, lmin + 1, ..., lmax

we then plot

∥dψlmin∥2, 4∥dψlmin+1∥2, 42∥dψlmin+2∥2, ..., 4lmax−lmin−1∥dψlmax−1∥2

Additionally, for the case when idtype = 0, so that we know the exact solution, we can compute the actual
solution errors. Specifically, we can perform precisely the same type of convergence test just described, but
where ψl+1 is replaced with ψexact. Thus we define

∥E(ψl)∥2(tn) = ∥ψexact − ψl∥2(tn)

and use exactly the same plotting strategy for ∥E(ψl)∥2 as we do for ∥dψl∥2.

2.5 Convergence Testing Implementation

The convergence test we preformed had the following parameters

1. idtype = 0, vtype = 0

- idpar = [3]

- tmax = 0.25

- lambda = 0.1

- lmin = 6

- lmax = 9

2. idtype = 1, vtype = 0

- idpar = [0.50 0.075 0.0]

- tmax = 0.01

- lambda = 0.01

7

- lmin = 6

- lmax = 9

The following is the function that will calculate the convergence test and plot the three graphs. The code
was derived from the previous section.

function c t e s t 1d ()
% ge t s o l u t i o n s f o r conv t e s t 1 f o r d i f f e r e n t l e v e l s
m = 3 ;
[x1 6 t1 6 p s i 1 6 p s i r e 1 6 ps i im1 6 psimod1 6 prob1 6 v1 6] = . . .

s ch 1d cn (0 . 2 5 , 6 , 0 . 1 , 0 , [m] , 0 , []) ;
[x1 7 t1 7 p s i 1 7 p s i r e 1 7 ps i im1 7 psimod1 7 prob1 7 v1 7] = . . .

s ch 1d cn (0 . 2 5 , 7 , 0 . 1 , 0 , [m] , 0 , []) ;
[x1 8 t1 8 p s i 1 8 p s i r e 1 8 ps i im1 8 psimod1 8 prob1 8 v1 8] = . . .

s ch 1d cn (0 . 2 5 , 8 , 0 . 1 , 0 , [m] , 0 , []) ;
[x1 9 t1 9 p s i 1 9 p s i r e 1 9 ps i im1 9 psimod1 9 prob1 9 v1 9] = . . .

s ch 1d cn (0 . 2 5 , 9 , 0 . 1 , 0 , [m] , 0 , []) ;

% coarsen s o l u t i o n s to match s i z e o f lmin s o l u t i o n
p s i 1 7 = ps i 1 7 (1 : 2 : end , 1 : 2 : end) ;
p s i 1 8 = ps i 1 8 (1 : 4 : end , 1 : 4 : end) ;
p s i 1 9 = ps i 1 9 (1 : 8 : end , 1 : 8 : end) ;

dps i6 = ps i 1 7 − p s i 1 6 ;
dps i7 = ps i 1 8 − p s i 1 7 ;
dps i8 = ps i 1 9 − p s i 1 8 ;

% ca l c u l a t e rms va l u e s o f dps i
rms dps i6 = rms (dpsi6 , 2) ;
rms dps i7 = rms (dpsi7 , 2) ;
rms dps i8 = rms (dpsi8 , 2) ;

% Removed a l l non−p l o t l i n e s f o r c l a r i t y
plot (t1 6 , rms dpsi6 , ' r−.o ') ;
plot (t1 6 , 4 ∗ rms dpsi7 , 'g−.+ ') ;
plot (t1 6 , 4ˆ2 ∗ rms dpsi8 , 'b−.∗ ') ;

% ca l c u l a t e exac t s o l u t i o n
p s i e x a c t = zeros (s ize (t1 6 , 2) , s ize (x1 6 , 2)) ;
for idx = 1 : s ize (t1 6 , 2)

p s i e x a c t (idx , :) = exp(−1 i ∗ mˆ2 ∗ piˆ2 ∗ t1 6 (idx)) ∗ sin (m ∗ pi ∗ x1 6) ;
end

% ca l c u l a t e rms va l u e s o f E
rms E6 = rms (p s i e x a c t − ps i1 6 , 2) ;
rms E7 = rms (p s i e x a c t − ps i1 7 , 2) ;
rms E8 = rms (p s i e x a c t − ps i1 8 , 2) ;
rms E9 = rms (p s i e x a c t − ps i1 9 , 2) ;

% Removed a l l non−p l o t l i n e s f o r c l a r i t y
plot (t1 6 , rms E6 , ' r−.o ') ;
plot (t1 6 , 4 ∗ rms E7 , 'g−.+ ') ;

8

plot (t1 6 , 4ˆ2 ∗ rms E8 , 'b−.∗ ') ;
plot (t1 6 , 4ˆ3 ∗ rms E9 , 'b−.∗ ') ;

end

2.6 Numerical Experiments

To make sense of our results we ran through some numerical experiments. The values calculated in these
experiments are as follows. Consider the discrete running integral of the probability density

Pn
j = P (xj , t

n), j = 1, 2, ..., nx, n = 1, 2, ..., nt)

We define the temporal average, P j of the above quantity:

P j =

∑nt

n=1 P
n
j

nt

We will also want to ensure that P j is properly normalized so that Pnx
= 1. We can do this as follows:

P j :=
P j

Pnx

, j = 1, 2, ..., nx

In the following we will assume that P j has been properly normalized. Given two values of x, x1 and x2,
satisfying x2 ≥ x1, we can interpret the quantity

P (x2)− P (x1)

as the fraction of time our quantum particle spends in the interval x1 ≤ x ≤ x2. Here the notation P (x) is
to be interpreted as P (x) = P (xj) = P j where xj is the nearest grid point to x. Now, for a free particle—i.e.
for V = 0 and for sufficiently long times, we expect that

P (x2)− P (x1) −→ x2 − x1

That is, the fraction of time the particle spends in the interval is given simply by the width of the interval
(this direct equality is due to the fact that we are solving the Schrodinger equation on the unit interval,
0 ≤ x ≤ 1). For the general case of a non-zero potential, we can then define the excess fractional probability
that the particle spends in a given spatial interval as

F e(x1, x2) =
P (x2)− P (x1)

x2 − x1

For the experiments described in the next section, this quantity will span orders of magnitude so for the
purposes of plotting it will be convenient to compute its natural logarithm

lnF e(x1, x2) = ln
P (x2)− P (x1)

x2 − x1

We can also observe that although we have called F e(x1, x2) the excess fractional probability, it can in fact
satisfy F e(x1, x2) ≤ 1, indicating that the particle is spending less time in the specified interval than a free

9

particle would. Indeed, in the experiments that follow, we found find that F e(x1, x2) ≤ 1 is the rule rather
than the exception.

2.7 Numerical Experiments Implementation

The numerical experiments preformed had the following parameters

1. Barrier Survey

- tmax = 0.1

- level = 9

- lambda = 0.01

- idtype = 1

- idpar = [0.40, 0.075, 20.0]

- vtype = 1

- vpar = [0.6, 0.8, VARIABLE ≥ 0]

- x1 = 0.8

- x2 = 1.0

2. Well Survey

- tmax = 0.1

- level = 9

- lambda = 0.01

- idtype = 1

- idpar = [0.40, 0.075, 0.0]

- vtype = 1

- vpar = [0.6, 0.8, VARIABLE ≤ 0]

- x1 = 0.6

- x2 = 0.8

The following is the function that will calculate the numerical experiments and plot the specified graphs.
The code was derived from the previous section.

% ca l c u l a t e output v e c t o r s
Fe = zeros (num exp , 1) ;

% run exper iments
for idx = 1 : num exp

[x t p s i p s i r e ps i im psimod prob v] = . . .
s ch 1d cn (tmax , l e v e l , lambda , 1 , [0 . 4 0 , 0 . 075 , 2 0 . 0] , 1 , [0 . 6 0 . 8 V0(idx)]) ;

% p j ˆn = prob [x j , t ˆn] i s the convent ion
% c a l c u l a t e normal ized temporal average
temp avg prob = mean(prob) ;
temp avg prob = temp avg prob / temp avg prob (nx) ;

10

% f ind c l o s e s t po in t s in x to x1 and x2
[˜ , x1 idx] = min(abs (x − x1)) ;
[˜ , x2 idx] = min(abs (x − x2)) ;

% ca l c u l a t e f r a c t i o n a l p r o b a b i l i t y
Fe(idx) = (temp avg prob (x2 idx) − temp avg prob (x1 idx)) / (x2 − x1) ;
i f Fe >= 1

fpr intf (”Broken Rule ”) ;
end

i f mod(idx , 30) == 0
fpr intf (” I t e r a t i o n ” + s t r i n g (idx) + ”\n ”) ;

end
end

% Removed a l l non−p l o t l i n e s f o r c l a r i t y
plot (lnV0 , log (Fe) , ' r−.o ') ;

This code was used in both barrier survey.m and well survey.m to generate their respective plots with their
respective initial conditions.

3 Problem 1 Results

3.1 Convergence Test

The result of the 4-level convergence test can be seen blow. Note that we do indeed see near-coincidence
of the curves, with better agreement as we go to higher values of l. As a stringent test that our numerical
solution is behaving as it should, implying that the implementation is correct, we performed a 4-level (6,
7, 8 and 9) convergence test for our FDA as discussed in class following the steps discussed in the previous
section. With the CrankNicolson algorithm developed, a 4-level convergence test was performed and we
noticed near-coincidence of the curves, with better agreement as we go to higher values of l. This was done
again but comparing the exact value of the solution and again near-coincidence of the curves was observed.

11

The following graph is for the case of using ψexact in our 4-level convergence test calculation.

If we wanted to complete a more detailed convergence test we could extend our convergence test by repeating
the calculation with an even higher levels.

3.2 Numerical Experiments

The result from the barrier and well survey experiments can be seen below. For the barrier survey case,
we computed F e(0.8, 1.0) for 251 uniformly spaced values of ln(V0) ranging from -2 to 5. We went on to
perform two numerical experiments where the excess fractional probability that the particle spends in a given
spatial interval was analyzed. For the experiments described, this quantity will span orders of magnitude so,
particularly for the purposes of plotting, it was convenient to compute its (natural) logarithm. These values
were graphed for the two experiments.

12

For the well survey case, we computed F e(0.6, 0.8) for 251 uniformly spaced values of ln(|V0|) ranging from
2 to 10.

If we wanted to complete a more detailed experiment we could extend our experiment by repeating the
calculation with an even higher levels and less spacing between the values of V0. It made sense that for the
barrier survey, the graph started a bit below zero and then dropped off with increasing values of V0. For
the well survey, it made sense that it started a bit above zero and then exhibited some sinusoidal tendencies
while also dropping in value as we increased V0.

13

4 Problem 2 Introduction

In problem two of this project our goal was to solve the two-dimensional Schrodinger equation using the
alternating direction implicit (ADI) discretization technique. The non-dimensionalized continuum equation
we will be analyzing is

ψt = i(ψxx + ψyy)− iV (x, y)ψ (14)

In this form, the similarity to a diffusion equation with an imaginary diffusion constant (and a source term)
can be seen. Equation (14) is to be solved on the domain

0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ t ≤ tmax

subject to initial and boundary conditions

ψ(x, y, 0) = ψ0(x, y)

ψ(0, y, t) = ψ(1, y, t) = ψ(x, 0, t) = ψ(x, 1, t) = 0

5 Review of Theory & Numerical Approach for Problem 2

5.1 The Two-Dimensional Schrodinger Equation

As stated in the introduction, in this section we will be discussing the two-dimensional Schrodinger equation
and some of its useful properties and quantities. Note that most of the useful properties are the same as for
the one dimensional case.

5.1.1 Useful Quantities

The most important different useful quantity from the one-dimensional case is a different family of exact
solutions for the wave equation. Most of the other quantities are the same idea with different dimensions.
A family of exact solutions of (14) with its respective initial conditions and boundary conditions can be
described by

ψ(x, y, t) = e−i(m2
x+m2

y)π
2t sin(mxπx) sin(myπy) (15)

where mx and my are positive integers.

5.1.2 Useful Quantities Implementation

The useful quantities that were previously discussed were implemented with the following code inside the
sch 2d adi.m script.

p s i r e = real (p s i) ;
ps i im = imag(p s i) ;
psimod = sqrt (p s i .∗ conj (p s i)) ;

14

5.2 Initial Conditions and Potentials

Partial differential equations can be very sensitive to initial conditions. These initial conditions create
solution families in different forms of the wave equation. Our potential V (x, y, t) also effects the behaviour
of the solution. For this problem we will be considering two initial data types and three potential functions.
The two initial data types can be described as exact family and boosted Gaussian respectively.

ψ(x, y, 0) = sin(mxπx) sin(myπy) (16)

ψ(x, y, 0) = eipxxeipyye−((x−x0)
2/δ2x+(y−y0)

2/δ2y) (17)

As previously, we will not worry about the fact that the Gaussian data is strictly speaking incompatible
with the boundary conditions; just be sure to always impose the correct boundary conditions. The three
potential functions can be described as no potential, rectangular barrier/well, or double slit.

V (x, y) = 0 (18)

V (x, y) =

{
Vc for xmin ≤ x ≤ xmax and ymin ≤ y ≤ ymax

0 otherwise
(19)

Let j′ = (ny − 1)/4 + 1 then

V (x, y) =


Vi,j′ = Vi,j′+1 = 0 for (x1 ≤ xi and xi ≤ x2) or (x3 ≤ xi and xi ≤ x4)

Vi,j′ = Vi,j′+1 = Vc otherwise

Vi,j = 0 for j ̸= (j′ or j′ + 1)

(20)

Specifically for the double slit case, V is only non-zero for y-locations given by j = j′ or j = j′ + 1 and for
x-positions not coincident with one of the slits. This thus simulates a thin two mesh points wide plate at a
fixed y-position, with adjustable slit openings, which span (x1, x2) and (x3, x4).

5.3 Initial Conditions and Potentials Implementation

The input parameters idtype and vtype are integers that select which initial data type and potential type,
respectively, are to be used. Dependent on the type, elements of the associated parameter vector will be
used to define the initial data or potential. Specifically, implementation options as follows:

Initial Data Types

1. Exact Family (16): idtype == 0

- idpar(1) = mx

- idpar(2) = my

2. Boosted Gaussian (17): idtype == 1

- idpar(1) = x0

- idpar(2) = y0

- idpar(3) = δx

- idpar(4) = δy

- idpar(5) = px

- idpar(6) = py

15

Potential Types

1. No Potential (18): vtype == 0

2. Rectangular Barrier or Well (19): vtype == 1

- idpar(1) = xmin

- idpar(2) = xmax

- idpar(3) = ymin

- idpar(4) = ymax

- idpar(5) = Vc

3. Double Split (20): vtype == 2

- idpar(1) = x1

- idpar(2) = x2

- idpar(3) = x3

- idpar(4) = x4

- idpar(5) = Vc

The initial conditions and potentials that were previously discussed were implemented with the following
code inside the sch 2d adiṁ script.

% I n i t i a l Data
i f id type == 0

for idx = 1 : nx
p s i (1 , idx , :) = sin (idpar (1) ∗ pi ∗ x (idx)) ∗ sin (idpar (2) ∗ pi ∗ y) ;

end
e l s e i f id type == 1

for idx = 1 : nx
p s i (1 , idx , :) = exp(1 i ∗ idpar (5)∗ x (idx)) ∗ . . .

exp(1 i ∗ idpar (6)∗ y) .∗ . . .
exp(−((x (idx) − idpar (1))ˆ2 / idpar (3)ˆ2 + . . .
(y − idpar (2)) . ˆ 2 / idpar (4) ˆ 2)) ;

end
else

fprintf (” I nva l i d idtype ”) ;
return

end

% Po t en t i a l Data
i f vtype == 0

v = zeros (nx , ny) ;
e l s e i f vtype == 1

v = zeros (nx , ny) ;
for i i = 1 : nx

for j j = 1 : ny
i f vpar (1) <= x(i i) && x(i i) <= vpar (2) && . . .

vpar (3) <= y(j j) && y(j j) <= vpar (4)
v (i i , j j) = vpar (5) ;

end

16

end
end

e l s e i f vtype == 2
v = zeros (nx , ny) ;
jp = (ny−1)/4 + 1 ;
v (: , jp) = vpar (5) ;
v (: , jp+1) = vpar (5) ;
for idx = 1 : nx

i f (vpar (1) <= x(idx) && x(idx) <= vpar (2)) | | . . .
(vpar (3) <= x(idx) && x(idx) <= vpar (4))

v (idx , jp) = 0 ;
v (idx , jp+1) = 0 ;

end
end

else
fprintf (” I nva l i d idtype ”) ;
return

end

5.4 Alternating Direction Implicit Discretization

The ADI method is a finite difference method used for numerically solving partial differential equations using
discretization. As for the 1d case, the continuum domain is discretized by introducing the discretization level,
l, and the ratio of temporal to spatial mesh spacings

λ =
∆t

∆x
=

∆t

∆y

We can then define the following parameters

nx = ny = 2l + 1

∆x = ∆y = 2−l

∆t = λ∆x

nt = round(tmax/∆t) + 1

We next define the difference operators ∂hxx and ∂hyyby

∂hxxu
n
i,j =

uni+1,j − 2uni,j + uni−1,j

∆x2

∂hyyu
n
i,j =

uni,j+1 − 2uni,j + uni,j−1

∆y2

Using an ADI discretization of (14) we can get the following result. Note that the ADI method allows us to
solve for one time step by using an intermediate half time step. This then results in two discretized equations
that need to be solved. This can be done by solving n traditional systems.

(
1− i

∆t

2
∂hxx

)
ψ
n+1/2
i,j =

(
1 + i

∆t

2
∂hxx

)(
1 + i

∆t

2
∂hyy − i

∆t

2
Vi,j

)
ψh
i,j (21)

17

where

i = 2, 3, ..., nx − 1, j = 2, 3, ..., ny − 1, n = 1, 2, ..., nt − 1

and

(
1− i

∆t

2
∂hyy + i

∆t

2
Vi,j

)
ψn+1
i,j = ψ

n+1/2
i,j (22)

where

i = 2, 3, ..., nx − 1, j = 2, 3, ..., ny − 1, n = 1, 2, ..., nt − 1

Equations (21) and (22) are supplemented with the initial conditions

ψ1
i,j = ψ0(xi, yj)

and the boundary conditions

ψn
1,j = ψn

nx,j = ψn
i,1 = ψn

i,ny
= 0

The solution to these equation can be found using tri-diagonal systems. We rewrite (21) and (22) in the
following forms respectively

c+i ψ
n+1/2
i+1,j + c0iψ

n+1/2
i,j + c−i ψ

n+1/2
i−1,j = fi

c+j ψ
n+1
i,j+1 + c0jψ

n+1
i,j + c−j ψ

n+1
i,j−1 = fj

where the different c vectors are the values along the three central diagonals in the sparse matrices. After
rearranging (21) we find

c+i =
−i∆t
2∆x2

c0i = 1 +
i∆t

∆x2

c−i =
−i∆t
2∆x2

= c+i

fi =

(
1 + i

∆t

2
∂hxx

)(
1 + i

∆t

2
∂hyy − i

∆t

2
Vi,j

)
ψh
i,j

We can use these coefficient vectors to generate a sparse matrix using ”spdiags” and then solve the system
using left division for the first half step. Note that because nx = ny some of the equations are the same.
After rearranging (22) we find

c+j = c+i

c0j = 1 +
i∆t

∆y2
+ i

∆t

2
Vi,j = c0i + i

∆t

2
Vi,j

18

c−j = c+j

fj = ψ
n+1/2
i,j

We can use these coefficient vectors to generate a sparse matrix using ”spdiags” and then solve the system
using left division for the first full step using the result from the half step.

5.5 Alternating Direction Implicit Discretization Implementation

The steps for the ADI discretization method previously discussed was implemented with the following code
inside the sch 2d adi.m script.

% I n i t i a l i z e s t o rage f o r sparse matrix 1 ,2 and RHS 1 ,2
dl = zeros (nx , 1) ;
d = zeros (nx , 1) ;
du = zeros (nx , 1) ;
f 1 = zeros (nx , 1) ;
f 2 = zeros (ny , 1) ;

% Set up t r i d i a g o n a l system 1
dl = −0.5 i ∗ dt / dxˆ2 ∗ ones (nx , 1) ;
d = (1 + 1 i ∗ dt / dxˆ2) .∗ ones (nx , 1) ;
du = dl ;

% Fix up boundary cases
d (1) = 1 . 0 ;
du (2) = 0 . 0 ;
d l (nx−1) = 0 . 0 ;
d (nx) = 1 . 0 ;

% Define sparse matrix 1
A hal f = spdiags ([d l d du] , −1:1 , nx , nx) ;

% Set up t r i d i a g o n a l system 2 in the loop
% d l and du unchanged because ny=nx
% d i s x and y dept . so add p o t e n t i a l in the loop

% Compute s o l u t i o n us ing ADI scheme
for n = 1 : nt−1

% Solve h a l f s t ep system
p s i h a l f = zeros (nx , ny) ;
for k = 2 : ny−1

% Define RHS of l i n e a r system
dyy = (p s i (n , : , k+1) − 2∗ p s i (n , : , k) + ps i (n , : , k−1)) / dy ˆ2 ;
% r i g h t b racke t c a l c u l a t i o n (in t e rmed ia t e va lue)
p s i i n t e r = ps i (n , : , k) + 0 .5 i ∗dt∗dyy − 0 .5 i ∗dt∗v (: , k) . ' . ∗ p s i (n , : , k) ;

% f u l l RHS c a l c u l a t i o n
dxx = (p s i i n t e r (1 : nx−2) − 2∗ p s i i n t e r (2 : nx−1) + p s i i n t e r (3 : nx)) / dx ˆ2 ;
f 1 (2 : nx−1) = p s i i n t e r (2 : nx−1) + 0 .5 i ∗dt∗dxx ;

% BCs
f 1 (1) = 0 . 0 ;

19

f 1 (ny) = 0 . 0 ;

% Solve system 1 , thus updat ing approximation to next time s t ep
p s i h a l f (: , k) = A hal f \ f 1 ;

end

% Solve one s t ep system
for h = 2 : nx−1

% add p o t e n t i a l to sparse matrix
dv = d + 0.5 i ∗dt∗v (h , :) . ' ;
% Fix up boundary cases
dv (1) = 1 . 0 ;
dv (nx) = 1 . 0 ;
% Define sparse matrix 2 wi th p o t e n t i a l
A one = spdiags ([d l dv du] , −1:1 , ny , ny) ;

% Define RHS of l i n e a r system
f 2 = p s i h a l f (h , :) . ' ;

% BCs
f 2 (1) = 0 . 0 ;
f 2 (nx) = 0 . 0 ;

% Solve system 2 , thus updat ing approximation to next time s t ep
p s i (n+1, h , :) = A one \ f 2 ;

end
end

5.6 Convergence Testing

We then performed convergence tests in the same manner that was done for the one-dimensional case, taking
into account the extra dimension. In particular, when performing a convergence test, compute the two-level
deviation norms

∥dψl∥2(tn) (23)

as well as the deviations from the exact solution when using initial data corresponding to an exact solution

∥E(ψl)∥2(tn) = ∥ψexact − ψl∥2(tn)

Note that for the two-dimensional case, the spatial norm ∥.∥2 involves a sum over both spatial dimensions,
i.e. treat any 2d grid function as a vector of length nx × ny.

5.7 Convergence Testing Implementation

The convergence test we preformed had the following parameters

1. idtype = 0, vtype = 0

- idpar = [2, 3]

20

- tmax = 0.05

- lambda = 0.05

- lmin = 6

- lmax = 9

The following is the function that will calculate the convergence test and plot the three graphs. The code
was derived from the previous section.

function c t e s t 2d ()
% ge t s o l u t i o n s f o r conv t e s t f o r d i f f e r e n t l e v e l s
mx = 2 ;
my = 3 ;
[x6 y6 t6 ps i 6 p s i r e 6 psi im6 psimod6 v6] = . . .

s ch 2d ad i (0 . 0 5 , 6 , 0 . 05 , 0 , [mx, my] , 0 , []) ;
[x7 y7 t7 ps i 7 p s i r e 7 psi im7 psimod7 v7] = . . .

s ch 2d ad i (0 . 0 5 , 7 , 0 . 05 , 0 , [mx, my] , 0 , []) ;
[x8 y8 t8 ps i 8 p s i r e 8 psi im8 psimod8 v8] = . . .

s ch 2d ad i (0 . 0 5 , 8 , 0 . 05 , 0 , [mx, my] , 0 , []) ;
[x9 y9 t9 ps i 9 p s i r e 9 psi im9 psimod9 v9] = . . .

s ch 2d ad i (0 . 0 5 , 9 , 0 . 05 , 0 , [mx, my] , 0 , []) ;

% coarsen s o l u t i o n s to match s i z e o f lmin s o l u t i o n
ps i 7 = ps i 7 (1 : 2 : end , 1 : 2 : end , 1 : 2 : end) ;
p s i 8 = ps i 8 (1 : 4 : end , 1 : 4 : end , 1 : 4 : end) ;
p s i 9 = ps i 9 (1 : 8 : end , 1 : 8 : end , 1 : 8 : end) ;

dps i6 = ps i 7 − ps i 6 ;
dps i7 = ps i 8 − ps i 7 ;
dps i8 = ps i 9 − ps i 8 ;

% ca l c u l a t e rms va l u e s o f dps i
norm dpsi6 = psi norm (dps i6) ;
norm dpsi7 = psi norm (dps i7) ;
norm dpsi8 = psi norm (dps i8) ;

% Removed a l l non−p l o t l i n e s f o r c l a r i t y
plot (t6 , norm dpsi6 , ' r−.o ') ;
plot (t6 , 4 ∗ norm dpsi7 , 'g−.+ ') ;
plot (t6 , 4ˆ2 ∗ norm dpsi8 , 'b−.∗ ') ;

% ca l c u l a t e exac t s o l u t i o n
p s i e x a c t = zeros (s ize (t6 , 2) , s ize (x6 , 2) , s ize (y6 , 2)) ;
for i d t = 1 : s ize (t6 , 2)

for idx = 1 : s ize (x6 , 2)
p s i e x a c t (idt , idx , :) = exp(−1 i ∗(mxˆ2+myˆ2)∗pi ˆ2∗ t6 (i d t)) ∗ . . .

sin (mx∗pi∗x6 (idx)) ∗ sin (my∗pi∗y6) ;
end

end

% ca l c u l a t e rms va l u e s o f E
norm E6 = psi norm (p s i e x a c t − ps i 6) ;

21

norm E7 = psi norm (p s i e x a c t − ps i 7) ;
norm E8 = psi norm (p s i e x a c t − ps i 8) ;
norm E9 = psi norm (p s i e x a c t − ps i 9) ;

% Removed a l l non−p l o t l i n e s f o r c l a r i t y
plot (t6 , norm E6 , ' r−.o ') ;
plot (t6 , 4 ∗ norm E7 , 'g−.+ ') ;
plot (t6 , 4ˆ2 ∗ norm E8 , 'b−.∗ ') ;
plot (t6 , 4ˆ3 ∗ norm E9 , ' c−.∗ ') ;

end

% Output
% norm : Vector o f norms [nt]
function norm = psi norm (p s i)

[nt , nx , ny] = s ize (p s i) ;
norm = zeros (nt , 1) ;
for n = 1 : nt

for i i = 1 : nx
for j j = 1 : ny

norm(n) = norm(n) + abs (p s i (n , i i , j j)) ˆ 2 ;
end

end
end
norm = sqrt (norm / nx / ny) ;

end

5.8 Numerical Experiments

The goal for the numerical experiments was to make AVI movies of the following scenarios. In all cases we
used Gaussian initial data, with or without a boost (in either and/or both directions). Two types of plot
will be made, first a contour plot and second was a surface plot. Note that a level of 8 was user for all
experiments.

1. Scattering off a rectangular barrier (idtype = 1, vtype = 1).

- tmax = 0.04, lambda = 0.01

- x0 = 0.3, y0 = 0.5, δx = 0.055, δy = 0.055, px = 20, py = 10

- xmin = 0.5, xmax = 0.7, ymin = 0.2, ymax = 0.8, Vc = 106

2. Scattering off a rectangular well (idtype = 1, vtype = 1).

- tmax = 0.04, lambda = 0.01

- x0 = 0.3, y0 = 0.5, δx = 0.055, δy = 0.055, px = 0, py = 0

- xmin = 0.5, xmax = 0.7, ymin = 0.2, ymax = 0.8, Vc = −104

3. Scattering through a double slit (idtype = 1, vtype = 2).

- tmax = 0.04, lambda = 0.01

- x0 = 0.5, y0 = 0.1, δx = 0.055, δy = 0.055, px = 0, py = 15

- x1 = 0.3, x2 = 0.4, x3 = 0.6, x4 = 0.7, Vc = 106

22

The code for all the plotting can be seen in movies.m. For the barrier experiment we can see the wave come
in from the right side and scatter off the barrier and no part of the wave makes it through. This makes
sense due to it having such a large potential in that rectangular section. Looking at the contour plot we can
confirm that zero values can be seen inside the barrier rectangle. For the well experiment we can see the
wave come in from the right side and scatter off the barrier and some part of the wave makes it through. This
makes sense due to it having such a large negative potential in that rectangular section. Note that some of
the wave function was able to make it through and exist which makes sense due to the well nature. Looking
at the contour plot we can confirm that small local extremes can be seen inside the well rectangle. For the
double slit experiment we can see the wave come in from the left side and scatter off the barrier and a small
part of the wave makes it through the two slits and then interferes with itself. We can then see the bright
and dark fringes at the far end of the plot which is a characteristic of the double slit experiment. Looking
at the contour plot we can confirm that the wave function leaks through the double slits. The surface and
contour plots can be found in the submission folder.

6 Problem 2 Results

6.1 Convergence Test

The result of the 4-level convergence test can be seen blow. Note that we do indeed see near-coincidence
of the curves, with better agreement as we go to higher values of l. As a stringent test that our numerical
solution is behaving as it should, implying that the implementation is correct, we performed a 4-level (6,
7, 8 and 9) convergence test for our FDA as discussed in class following the steps discussed in the previous
section, the figures can be seen below.

The following graph is for the case of using ψexact in our 4-level convergence test calculation.

23

If we wanted to complete a more detailed convergence test we could extend our convergence test by repeating
the calculation with an even higher levels.

6.2 Numerical Experiments

The results for the numerical experiments can be seen at their respective links or in the movies folder of the
submission. Two types of plot were be made, first a contour plot and second a surface plot for each of the
three cases. The following are snap shots of each wave function for the surface and contour plots. For the
barrier movie we can see the wave come in from the right side and scatter off the barrier and no part of the
wave makes it through. This makes sense due to it having such a large potential in that rectangular section.
For the well movie we can see the wave come in from the right side and scatter off the barrier and some
part of the wave makes it through. This makes sense due to it having such a large negative potential in that
rectangular section. Note that some of the wave function was able to make it though and exist in which
makes sense due to the well nature. For the double slit movie we can see the wave come in from the left side
and scatter off the barrier and a small part of the wave makes it through the two slits and then interferes
with itself. We can then see the bright and dark fringes at the far end of the plot which is a characteristic
of the double slit experiment.

24

Figure 1: Scattering off a rectangular barrier

Figure 2: Scattering off a rectangular well

Figure 3: Scattering through a double slit

The following are snap shots of each wave function for the contour plots.

25

Figure 4: Scattering off a rectangular barrier

Figure 5: Scattering off a rectangular well

Figure 6: Scattering through a double slit

26

7 Discussion & Conclusion

In this project we analyzed two problems, the first being solving the one-dimensional time-dependent
Schrodinger equation using the Crank-Nicolson discretization method and the second being solving the two-
dimensional Schrodinger equation using the alternating direction implicit (ADI) discretization technique.

First, we developed an algorithm to use the Crank-Nicolson discretization method which includes solving a
tri-diagonal matrix. We solved for the coefficients based off the one-dimensional time-dependent Schrodinger
equation and then used ”spdiags” to generate the matrix. We then solved the system using left division
and calculated some useful quantities like the running integral of the probability density. With the Crank-
Nicolson algorithm developed, a 4-level convergence test was performed where near-coincidence of the curves
was observed, with better agreement as we go to higher values of l. This was done again but comparing
the exact value of the solution and again near-coincidence of the curves was observed. We then wanted
on to perform two numerical experiments where the excess fractional probability that the particle spends
in a given spatial interval was analyzed. For the experiments described, this quantity will span orders of
magnitude so, particularly for the purposes of plotting, it was convenient to compute its natural logarithm.
These values were graphed for the two experiments. It made sense that for the barrier survey, the graph
started a bit below zero and then dropped off with increasing values of V0. For the well survey, it made sense
that it started a bit above zero and then exhibited some sinusoidal tendencies while also dropping in value
as we increased V0.

We then moved into implementing an algorithm to use the ADI method which includes solving a multiple
tri-diagonal matrices. This method uses a half step in n in order to be able to calculate a full step in n.
This is why multiple tri-diagonal matrices were needed to be constructed. We solved for the coefficients
based off the two-dimensional time-dependent Schrodinger equation which turned into two equations when
discretized. We then used ”spdiags” to generate the matrices. Next, we solved the systems using left division
and calculated some useful quantities like the real and imaginary part of the wave function. As done in the
first problem, a 4-level convergence test was performed where near-coincidence of the curves was observed,
with better agreement as we go to higher values of l. This was done again but comparing the exact value of
the solution and again near-coincidence of the curves was observed. Lastly, we performed three numerical
experiments where we analyzed scattering off a rectangular barrier, scattering off a rectangular well, and
scattering through a double slit. For each of these experiments a surface and contour plot was generated.
For the barrier movie we can see the wave come in from the right side and scatter off the barrier and no part
of the wave makes it through. This makes sense due to it having such a large potential in that rectangular
section. For the well movie we can see the wave come in from the right side and scatter off the barrier and
some part of the wave makes it through. This makes sense due to it having such a large negative potential in
that rectangular section. Note that some of the wave function was able to make it through and exist which
makes sense due to the well nature. For the double slit movie we can see the wave come in from the left side
and scatter off the barrier and a small part of the wave makes it through the two slits and then interferes
with itself. We can then see the bright and dark fringes at the far end of the plot which is a characteristic
of the double slit experiment.

I did not use generative AI. I encountered a couple problems during the implementation of this project.
The first problem I encountered was not knowing that ”i” behaves weirdly when you use it as an indexing
variable and representing the square root of -1. This was easily solved by not using ”i” to index the loops.
A second problem I encountered was generating the 251 uniformly spaced values of ln(V0) incorrectly for the
barrier survey. I generated them with the following command which does not space the values correctly:

V0 = linspace (exp(−2) , exp (5) , num exp) ;

when I should have generated the values like this:

lnV0 = linspace (−2 , 5 , num exp) ;
V0 = exp(lnV0) ;

27

The last problem I had was getting proper convergence in the 2-d case but that was because I calculated
one of the coefficients wrong from my initial derivation. This was easily fixed once the type was found.

28

	Problem 1 Introduction
	Review of Theory & Numerical Approach for Problem 1
	The One-Dimensional Time-Dependent Schrodinger Equation
	Useful Quantities
	Useful Quantities Implementation
	Initial Conditions and Potentials
	Initial Conditions and Potentials Implementation

	Crank-Nicolson Discretization
	Crank-Nicolson Discretization Implementation
	Convergence Testing
	Convergence Testing Implementation
	Numerical Experiments
	Numerical Experiments Implementation

	Problem 1 Results
	Convergence Test
	Numerical Experiments

	Problem 2 Introduction
	Review of Theory & Numerical Approach for Problem 2
	The Two-Dimensional Schrodinger Equation
	Useful Quantities
	Useful Quantities Implementation

	Initial Conditions and Potentials
	Initial Conditions and Potentials Implementation
	Alternating Direction Implicit Discretization
	Alternating Direction Implicit Discretization Implementation
	Convergence Testing
	Convergence Testing Implementation
	Numerical Experiments

	Problem 2 Results
	Convergence Test
	Numerical Experiments

	Discussion & Conclusion

