
PHYS 410 Project 1

Name: Steven Brown
Student Number: 90169772

1 Introduction

In this project the goal was to implement a very simplified model of galaxy collisions, motivated by work due
to Alar and Juri Toomre in the early 1970’s. This model is grossly inadequate for the detailed simulation
of galaxy interactions but nevertheless capable of reproducing some basic morphological features that are
observed in actual galactic collisions.

The model that will be studied in this project will be the Toomre Model. In the Toomre model, an isolated
galaxy is modeled as a central particle (core particle) that has some gravitating mass, mc. Orbiting this core
is some number, ns, of stars each with circular orbits of varying radii. The stars have vanishing gravitating
mass which means they experience an acceleration due to the core’s gravitational influence, but do not
contribute to the gravitational field themselves. Therefore, the core acts on each of the stars, but the stars
do not exert gravitational forces on either the core or the other stars.

To model a two galaxy collision we consider two cores (masses mc1 and mc2) surrounded by ns1 and ns2

particles. The galaxies start with initial positions that ensure that the interaction of core 1 with the stars
from galaxy 2 and vice versa is negligible. The galaxies will approach and interact in some fashion with one
another. All of the stars feel the gravitational influence of both cores, and each core feels the gravitational
influence of the other core. Therefore, any given particle will experience a gravitational force from either
one or two core particles.

Since we are enforcing that the stars do not enter the force/acceleration calculation, if there are O(N) stars,
then the cost of the simulation is O(N) vs. O(N2) which would be the case if all of the particles were
gravitating.

Note that code snippets will be included in this report but to see the full code and function
descriptions see the .m files submitted.

2 Review of Theory & Numerical Approach

2.1 Second Order Centered Finite Difference Approximation

We desire an O(∆t2) approximation of f ′′(t) which can be done through a second order centered finite
difference approximation. First use a Taylor Series to approximate f(t + ∆t). Then we can use a scaled
combination of f(t+∆t), f(t) and f(t−∆t) to get an approximate for f ′′(t) and some O(∆t2) terms. This
means that our approximation will be second order accurate.

f(t+∆t) = f(t) + ∆tf ′(t) +
1

2
∆t2f ′′(t) +

1

6
∆t3f ′′′(t) + · · ·

f(t−∆t) = f(t)−∆tf ′(t) +
1

2
∆t2f ′′(t)− 1

6
∆t3f ′′′(t) + · · ·

1

Add these two equations together and rearrange to find the approximation for f ′′(t) with O(∆t2) accuracy.

f(t+∆t) + f(t−∆t) = 2f(t) + ∆t2f ′′(t) +
1

12
∆t4f ′′′′(t) + · · ·

f(t+∆t)− 2f(t) + f(t−∆t)

∆t2
= f ′′(t) +O(∆t2) (1)

Now we can translate this result into grid spacing terminology. Grid spacing terminology lets us transform
from the physical (continuim) domain with 0 ≤ t ≤ tmax to a uniform finite difference gird domain tj . We
define the number of grid points as nt and the following equations.

fj+1 = f(tj +∆t), fj−1 = f(tj −∆t), fj+2 = f(tj + 2∆t)

We then define the grid spacing to be:

∆t =
tmax

nt − 1

The democratization parameter is defined as level l where changes by a factor of 2 are most convenient.

∆t,
∆t

2
,
∆t

4
−→ l, l + 1, l + 2

nt = 2l + 1 −→ ∆t =
tmax

2l

As l and nt get larger, ∆t gets smaller and the FDA should be more accurate. Therefore the discretized
version of FDA equation (1) is:

f ′′(t) ≈ fj+1 − 2fj + fj−1

∆t2
(2)

2.2 The Gravitational N-Body Problem Formulation

2.2.1 Physical & Mathematical Formulation

First we define N point particles labelled by an index i with masses mi to have position vectors ri(t)

ri(t) ≡ [xi(t), yi(t), zi(t)], i = 1, 2, . . . , N

in a Cartesian coordinate system (x, y, z). Using the law of gravitation as well as Newton’s second law, we
can formulate the basic equations of motion in vector form.

miai = G

N∑
j=1,j ̸=i

mimj

r2ij
r̂ij i = 1, 2, . . . , N 0 ≤ t ≤ tmax (3)

where ai = ai(t) is the acceleration of the i-th particle, G is Newton’s gravitational constant, and rij is the
magnitude of the separation vector rij between i and j particles. Thus, we define the following:

rij ≡ rj − ri, rij ≡ |rj − ri| =
√
(xj − xi)2 + (yj − yi)2 + (zj − zi)2, r̂ij ≡

rj − ri
rij

It will be more convenient to eliminate the unit vector and to non-dimensionalize the system of equations,
which in this case means choosing units in which G = 1 in equation (3) as follows:

miai =

N∑
j=1,j ̸=i

mimj

r3ij
rij i = 1, 2, . . . , N 0 ≤ t ≤ tmax (4)

2

Additionally, we know

ai(t) =
d2r(t)

dt2
(5)

meaning we can combine equations (4) and (5) and cancel the mi to get

d2ri
dt2

=

N∑
j=1,j ̸=i

mj

r3ij
rij i = 1, 2, . . . , N 0 ≤ t ≤ tmax (6)

Equation (6) is a system of second order differential equations in time for the vector quantities ri(t). Cancel-
ing the mi allows us to use this equation for ”mass-less” objects such as our stars. For a unique solution we
will need initial position and velocity conditions for each particle. This will be specified with the following
vectors.

ri(0) = r0i, vi(0) =
dr

dt
(0) = v0i i = 1, 2, . . . , N (7)

2.2.2 N-Body Acceleration Implementation

The following code implements the nbodyaccn.m script. This code is based off equation (6) to calculate the
acceleration of all particles due to core points. Note that since stars have vanishing gravitational mass, I only
included the core masses in m. This means that the outer loop loops over all particles but the inner loop
only loops over the first N particles, which are the core points (the position & velocity array’s was purposely
organized with core points first, then stars). Array slicing (using :) was also used for code cleanliness and
computation speedup because they are faster than for loops in MATLAB.

% m: Vector o f l e n g t h N conta in ing the core masses
% r : N + ns x 3 array con ta in ing the core + s t a r p o s i t i o n s
% a : N + ns x 3 array con ta in ing the computed core + s t a r a c c e l e r a t i o n s
function [a] = nbodyaccn (m, r)

a = zeros (s ize (r , 1) , 3) ;
for i = 1 : s ize (r , 1)

for j = 1 : length (m)
i f i == j

cont inue
end

r i j 3 = norm((r (j , :) − r (i , :))) ˆ 3 ;

a (i , :) = a (i , :) + m(j) ∗ (r (j , :) − r (i , :)) / (r i j 3) ;
end

end
end

2.2.3 Solution Using Finite Difference Approximation

In the physical (continuum) domain of this problem we have 0 ≤ t ≤ tmax and will assume we can use a
uniform time mesh to discretize. This means that the time at which we step the simulation will be constant.
We define the following with a level parameter l similar to what was done in section 2.1. When running the
simulation, l will be specified.

nt = 2l + 1, ∆t =
tmax

nt − 1
=

tmax

2l
, tn = (n− 1)∆t, n = 1, 2, . . . , nt

3

Next we define the following finite difference notation

rni ≡ ri(t
n)

and then combine it with equation (2) to get

d2r(t)

dt2

∣∣∣∣
t=tn

≈ rn+1 − 2rn + rn−1

∆t2

which we can then substitute into equation (6)

rn+1
i − 2rni + rn−1

i

∆t2
=

N∑
j=1,j ̸=i

mj

(rnij)
3
(rnj − rni) i = 1, 2, . . . , N 0 ≤ t ≤ tmax n+ 1 = 3, 4, . . . , nt (8)

We can then solve for the advanced time rn+1
i because rni and rn−1

i are known from initial conditions and
then previous time steps. The rearranged equation is the following

rn+1
i =

(
∆t2

N∑
j=1,j ̸=i

mj

(rnij)
3
(rnj − rni)

)
+ 2rni − rn−1

i (9)

2.2.4 N-Body Position & Velocity Implementation

The following describes how the position was calculated for each particle. Note that the plot graphics section
was removed to only show particle dynamics. This code was based off equation (9) and again array slicing
was used. Linear extrapolation was used to calculate the velocity at the final time step.

for n = 2 : nt − 1
% −−−−−−−−−−−− Graphics −−−−−−−−−−−−
. . .
% −−−−−−−−−−−− Dynamics −−−−−−−−−−−−

r (: , : , n+1) = dt ˆ2 ∗ nbodyaccn (m, r (: , : , n)) + 2∗ r (: , : , n) − r (: , : , n−1);
v (: , : , n) = (r (: , : , n+1) − r (: , : , n−1)) / (2∗ dt) ;

end

% Use l i n e a r e x t r a p o l a t i o n to determine the va lue o f v at the
% f i n a l time s t ep .
v (: , : , nt) = 2 ∗ v (: , : , nt−1) − v (: , : , nt −2);

2.2.5 Initial Conditions

Since we are using a three time level scheme, we need to determine values for r1i = ri(0) and r2i = ri(∆t).
Note that r1i and v1

i are given by the specified initial conditions. We need r2i to be calculated to O(∆t3)
accuracy so that the overall solution is O(∆t2). This is because nt ∼ ∆t−1 = O(∆t−1) meaning that per
time step, the error needs to be O(∆t3) in order for the overall solution to be O(∆t2). We can use Taylor
Series to calculate r2i as follows

ri(∆t) = ri(0) + ∆t
dri
dt

(0) +
1

2
∆t2

d2ri
dt2

(0) +O(∆t3)

4

and now substituting initial velocity and equation of motion in we get

r2i ≈ r1i +∆tv1
i +

1

2
∆t2

N∑
j=1,j ̸=i

mj

(r1ij)
3
(r1j − r1i) (10)

2.2.6 Initial Conditions Implementation

The following code shows how the initial conditions were implemented. Note that v0 and r0 are defined and
we use equation (10) to find the position at the second time step.

% I n i t i a l Condi t ions r ˆ1
r (1 :N, : , 1) = r0 ;
v (1 :N, : , 1) = v0 ;

% Ca lcu l a t e r ˆ2
r (: , : , 2) = r (: , : , 1) + dt∗v (: , : , 1) + dt ˆ2 ∗ nbodyaccn (m, r (: , : , 1)) / 2 . 0 ;

2.3 Suggested Test Case Derivation

A good, non-trivial configuration that was used to develop and test the FDA implementation describes two
particles with arbitrary masses in mutual circular orbit about their center of mass, and in the x-y plane. Let
the particle masses be m1 and m2, respectively, and let the particles be separated by a distance r. Let the
initial position and velocity vectors be

r1(0) = (r1, 0, 0)

r2(0) = (−r2, 0, 0)

v1(0) = (0, v1, 0)

v2(0) = (0,−v2, 0)

where r1, r2, v1 and v2 are all positive quantities, so that the particle separation is given by r = r1 + r2. The
initial position vector components were selected so that the two particles start on the horizontal axis. The
initial velocity vector components were selected to be purely tangential to the circular orbit. Additionally, let
m = m1+m2. In calculating the CM between two spheres you can assume each has its mass concentrated at
its geometric center. The center of mass between the spheres is then a point that is a ratio of the separations
and masses of the objects.

m1r1 = m2r2

then rearrange for r1 and r2 and sub in r = r1 + r2

r1 =
m2

m1
(r − r1) −→ r1 =

m2r

m1

(
1 +

m2

m1

) =
m2

m
r

r2 =
m1

m2
(r − r2) −→ r2 =

m1r

m2

(
1 +

m1

m2

) =
m1

m
r

The centrifugal inertial force on each particle causes its circle of travel. Note that the velocity of both
particles is purely tangential to the circular orbit.

F1 = m1
v21
r1

F2 = m2
v22
r2

5

The centrifugal force equals the gravitational force (remember we set G = 1) for a circular orbit so we can
solve for the velocity.

F1 = Fg1 −→ m1
v21
r1

=
m1m2

r2
−→ v1 =

√
m2r1
r

F2 = Fg2 −→ m2
v22
r2

=
m2m1

r2
−→ v2 =

√
m1r2
r

2.4 Suggested Test Case Implementation

The following code shows how the suggested test case was implemented based off section 2.3.

% ICs f o r mutual c i r c u l a r o r b i t
tmax = 140 ;
r = 4 ;
mc1 = 1 ;
mc2 = 0 . 5 ;
r1 = mc2 ∗ r / (mc2 + mc1) ;
r2 = mc1 ∗ r / (mc2 + mc1) ;
v1 = sqrt (mc2 ∗ r1) / r ;
v2 = sqrt (mc1 ∗ r2) / r ;

% Get po s i t i o n va l u e s at l e v e l s 6
[t6 r6 v6] = galaxy (2 , tmax , [mc1 mc2] , 6 , [r1 0 0 ; −r2 0 0] , [0 v1 0 ; 0 −v2 0] , 0) ;

2.5 FDA Convergence Test

We want to examine the behavior of the solution as ∆t −→ 0. Let u∗(t) be the exact (continuum) solution of
some differential equation then the error is

e(tn) = u∗(t
n)− u(tn)

where u(tn) is computed. Then we can also state

lim
∆t−→∞

e(tn) = ∆t2e2(t
n) +O(∆t4) (11)

where e2(t
n) is some function and the O(∆t4) is due to the FDA being centered. We use this as an assump-

tion for convergence analysis.

We always want to use at least 3 meshes (values of l) to then form the following from (11)

un
l ≈ un

∗ − (∆tl)
2en2 , un

l+1 ≈ un
∗ − (∆tl+1)

2en2 , un
l+2 ≈ un

∗ − (∆tl+2)
2en2

We can think of n labelling common set of times. We then subtract the solution on adjacent levels

un
l − un

l+1 = −((∆tl)
2 − (∆tl+1)

2)en2 =
−3

4
∆t2l e

n
2

un
l+1 − un

l+2 ≈ −3

4
(∆tl+1)

2en2 =
−3

16
∆t2l e

n
2

6

We can see that the error was reduced by a factor of 4. We can then plot these differences on a single plot
as a function of tn, scaling the lower level difference by the following ratio (in our simulation this will be a
factor of 4):

un
l − un

l+1

un
l+1 − un

l+2

The curves should be nearly coincident and alignment should get better for higher levels.

2.6 FDA Convergence Test Implementation

The following is the function that will calculate the convergence test and plot the three graphs. The code
was derived from section 2.5.

% Convergence t e s t o f b a s i c f i n i t e d i f f e r e n c e s o l u t i o n us ing two
% p a r t i c l e s (cores) wi th d i s t i n c t masses (say 1.0 and 0 .5) in
% mutual c i r c u l a r o r b i t about each o ther .
function convte s t ()

tmax = 140 ;
p lot1en = 1 ;
p lot2en = 1 ;
p lot3en = 1 ;

% ICs f o r mutual c i r c u l a r o r b i t
% See s e c t i on 2.4 f o r removed i n i t i a l cond i t i on c a l c u l a t i o n code
% Get p o s i t i o n va l u e s at l e v e l s 6 , 7 , 8
[t6 r6 v6] = galaxy (2 , tmax , [mc1 mc2] , 6 , [r1 0 0 ; −r2 0 0] , [0 v1 0 ; 0 −v2 0] , 0) ;
[t7 r7 v7] = galaxy (2 , tmax , [mc1 mc2] , 7 , [r1 0 0 ; −r2 0 0] , [0 v1 0 ; 0 −v2 0] , 0) ;
[t8 r8 v8] = galaxy (2 , tmax , [mc1 mc2] , 8 , [r1 0 0 ; −r2 0 0] , [0 v1 0 ; 0 −v2 0] , 0) ;

% Reshape v e c t o r s to on ly cons ider one p a r t i c l e ' s x dimension
r6 = reshape (r6 (1 , 1 , :) , [1 , length (t6)]) ;
r7 = reshape (r7 (1 , 1 , :) , [1 , length (t7)]) ;
r8 = reshape (r8 (1 , 1 , :) , [1 , length (t8)]) ;

i f plot1en
% Removed a l l non−p l o t l i n e s f o r c l a r i t y
plot (t6 , r6 , ' r−.o ') ;
plot (t7 , r7 , 'g−.+ ') ;
plot (t8 , r8 , 'b−.∗ ') ;

end

% Downsample l e v e l 7 & 8 to l en g t h o f l e v e l 6
r7 = r7 (1 : 2 : end) ;
r8 = r8 (1 : 4 : end) ;
% Compute d i f f e r e n c e s o f g r i d f unc t i on s between l e v e l s
r67 = r6 − r7 ;
r78 = r7 − r8 ;

i f plot2en
% Removed a l l non−p l o t l i n e s f o r c l a r i t y
plot (t6 , r67 , ' r−.o ') ;
plot (t6 , r78 , 'g−.+ ') ;

7

end

% Sca le l e v e l 7 ,8 d i f f e r e n c e
r78 = r78 ∗ 4 ;

i f plot3en
% Removed a l l non−p l o t l i n e s f o r c l a r i t y
plot (t6 , r67 , ' r−.o ') ;
plot (t6 , r78 , 'g−.+ ') ;

end
end

2.7 Adding Stars

As stated in the introduction, orbiting this core, in circular orbits of varying radii, are some number of stars.
For each galaxy, we want to restrict the stellar radii about the core to some minimum and maximum values,
and, for any given radii, distribute the star’s angular position randomly. This will yield a more natural
appearance for the galaxies at early times. Since we are assuming the starts have vanishing gravitating
mass, the circular motion that is about the center of mass of the star and its core will be at the cores
position. This allows us to assume r1 = 0 (the separation distance is the radius of the star) from section 2.3.
Thus we define the following:

rs(0) = (rscos(θ), rssin(θ), 0)

vs(0) = (−vssin(θ), vscos(θ), 0)

where rs and vs are the magnitude of the stars initial radii and velocity respectively and θ is its angle from
the positive x-axis. The initial velocity is found by using equations from section 2.3. Note that the direction
of circular motion can be switched by switching the sign of the velocity components. In order to achieve the
random distribution of stars around the core point we generate rs and θ randomly between some maximum
and minimum values. For θ we choose 0 and 2π.

2.8 Adding Stars Implementation

The only code that needed to be added to the core particle implementation was the handling of random
radii and angular position generation for the initial conditions. Note that the first N positions in r and v
were set to be for the core points and then the rest of positions were for the stars. We also know there are
ns stars per core point. An arbitrary maximum and minimum radii was selected and then a random point
between the two was calculated.

no s ta r s = ns == 0 ;
i f ˜ nos ta r s

% ICs f o r mutual c i r c u l a r o r b i t
s e c s t a r t = N+1;
secend = N+ns ;
for i = 1 : N

rmin = 1 . 5 ;
rmax = 3 ;
r s = rmin + (rmax − rmin) ∗ rand (ns , 1) ;
theta = 2 ∗ pi ∗ rand (ns , 1) ;
vs = sqrt (m(i) ∗ r s) . / r s ;

rx = r s .∗ cos (theta) ;

8

ry = r s .∗ sin (theta) ;
vx = −vs .∗ sin (theta) ;
vy = vs .∗ cos (theta) ;

r (s e c s t a r t : secend , : , 1) = [rx ry zeros (ns , 1)] + r0 (i , :) ;
v (s e c s t a r t : secend , : , 1) = [vx vy zeros (ns , 1)] + v0 (i , :) ;

s e c s t a r t = s e c s t a r t + ns ;
secend = secend + ns ;

end
end

3 Results

3.1 FDA Convergence Test

Before we begin studying galactic collisions, we convergence tested our basic finite difference solution using
two particles (cores) with distinct masses (say 1.0 and 0.5) in mutual circular orbit about each other. We
chose the x-coordinate from one of the particles and demonstrated using at least a three-level convergence
test that our implementation appears to have O(∆t2) error.

As a stringent test that our numerical solution is behaving as it should, implying that the implementation is
correct, we performed a 3-level (6, 7, and 8) convergence test for our FDA as discussed in class following the
steps discussed in section 2.5. Shown below is the initial position for the two core points that are orbiting
each-other in a circular orbit. See ”galaxy l7 convtest.avi” for a video of the orbit.

First, the x-position of each level simulation was plotted versus time seen below. Note that the curves show
general agreement, but that as time progresses there is an increasing amount of deviation, which is most

9

pronounced for the calculation that used the largest grid spacing (level 6, red line). The observed deviations
are a result of the approximate nature of the finite difference scheme.

Then we computed the differences in the grid functions from level to level and plotted them on a position
difference versus time graph shown below. Note that the two curves have the same shape, but different
overall amplitudes where each curve is a direct measure of the error in the numerical solution.

Lastly, we scale r78 by 4 and re-plot together with r67. If the convergence is second order, the curves should
be nearly coincident (the grid spacing goes down by a factor of 2, so the differences should go down by a
factor of 4). We can see this is true in the plot below. Also note how the magnitude of the error increases
with time, which is characteristic of a finite difference solution of this type.

10

If we wanted to complete a more detailed convergence test we could extend our convergence test by repeating
the calculation with an even higher level, for example level = 9.

3.2 Single Galaxy Dynamics

With the convergence tested, we then started with a single galaxy at rest and verified that, when evolved,
the stars remain on circular orbits about the core. We then simulated a galaxy which is moving with
some velocity. Note that you can translate a galaxy, or give it some overall velocity, simply by adding the
translation or velocity vector to the position or velocity, respectively, of the core and each of the stars.
We can see from the image below that the stars don’t fly away from the core. To see the video check out
”single galaxy check.avi”.

11

3.3 Galaxy Collisions

It’s now time to consider galaxy collisions. We begin with interactions where all particles are initially in
some plane and remain in that plane (the xy plane), and all of the work has the dynamics restricted to this
plane. The goal here was to perform some simulations which generate “interesting” morphologies, such as
the example shown in the movie on the course homework page. Note that these collisions should tend to
be “glancing” because the model will cease to be very meaningful if the cores get too close to one another.
Different experiments were conducted with different initial conditions to get interesting collision results. It
is important to note that the direction of rotation of the stars about a core relative to the overall angular
momentum of the collision will have an impact on the collision morphology. Thus to change that direction
of the starts orbit all that was needed to be done was flip the sign for initial velocity in section 2.7 equations.

Note in all these simulations, the mass of both cores is 0.5, there were 10,000 stars in total (5000 per galaxy)
and the simulation was ran for 2500 time steps with different maximum times.

The first simulation conducted was for a collision where stars from each others cores were swapped and
started to orbit the other core. No stars were shot off into infinity but some were left behind in the center
of the collision while the core continued to drift away in opposite directions. In this simulation tmax = 60s,
r1,0 = [−3.2,−3.8, 0], r2,0 = [3.2, 3.8, 0], v1,0 = [0.3, 0, 0], v2,0 = [−0.3, 0, 0]. See Figure 1 below or the
”no lost stars.avi” video.

The second simulation conducted was for a collision where the star orbits start to unravel and get lost
in the center between the two cores as they move away from each-other. In this simulation tmax = 40s,
r1,0 = [−3.5,−3.5, 0], r2,0 = [3.5, 3.5, 0], v1,0 = [0.4, 0, 0], v2,0 = [−0.4, 0, 0]. See Figure 2 below or the
”unravel.avi” video.

The last simulation conducted was for a combination of the previous two situation but in addition, some
stars shoot off to infinity and escape the orbits. Some of the stars shoot off to infinity because they get too
close to a core and the FDA breaks down. In this simulation tmax = 140s, r1,0 = [−4,−4, 0], r2,0 = [4, 4, 0],
v1,0 = [0.2,−0.05, 0], v2,0 = [−0.2, 0.05, 0]. See Figure 3 below or the ”stars shoot off.avi” video.

After examining these simulation it was observed that initial conditions have a large effect on the result of
the simulation. Note that for each of these simulation with level parameter 11, lower level parameters were
also tested and provided a less accurate simulation with slightly different results (mostly more stars shooting
off to infinity after the collision). It was also noticed that the larger the initial velocity of the cores, the more
stars were left behind in the middle as in the unravel simulation. This is due to the cores strong gravitational
attraction but also the fact that they are moving away from each-other quickly so the stars can get bumped
out of orbit and get left behind. Note that the velocities were chosen empirically to try to target glancing
collisions. In the figures below, as we go from left to right time has passed.

12

Figure 1: Stars Switch Orbit

Figure 2: Stars Unravel Orbit

Figure 3: Stars Escape Orbit

4 Discussion & Conclusion

In this project the goal was to implement a very simplified model of galaxy collisions, motivated by work due
to Alar and Juri Toomre in the early 1970’s. To model a two galaxy collision we considered two cores (masses
mc1 and mc2) surrounded by ns1 and ns2 particles. The galaxies started with initial positions that ensured
that the interaction of core 1 with the stars from galaxy 2 and vice versa were negligible. The galaxies
approached and interacted in different fashions with one another. We found a O(∆t2) approximation of
f ′′(t) which was done through a second order centered finite difference approximation and Taylor Series. We
then translated this result into grid spacing terminology and derived the physics and math for an n-body
problem. Then, we found the initial conditions for circular orbits for the stars around their cores. Next, we
convergence tested our finite difference approximation and found that the curves were nearly coincident and
that the magnitude of the error increases with time, which is characteristic of a finite difference solution of
this type.

We then moved onto galaxy collision where three simulation were conducted. Simulations with stars switch-

13

ing, star unraveling, and star escaping orbits were obtained. We saw a large effect on the result of the
simulation from slightly varying initial conditions. Simulation differences were also observed by changing the
level parameter. Lastly, it was also noticed that the larger the initial velocity of the cores, the more stars
were left behind in the middle as in the unravel simulation.

I did not have any problems with implementing the discrete equations of motion or anything else in this
project besides learning MATLAB syntax. I did not use generative AI.

14

	Introduction
	Review of Theory & Numerical Approach
	Second Order Centered Finite Difference Approximation
	The Gravitational N-Body Problem Formulation
	Physical & Mathematical Formulation
	N-Body Acceleration Implementation
	Solution Using Finite Difference Approximation
	N-Body Position & Velocity Implementation
	Initial Conditions
	Initial Conditions Implementation

	Suggested Test Case Derivation
	Suggested Test Case Implementation
	FDA Convergence Test
	FDA Convergence Test Implementation
	Adding Stars
	Adding Stars Implementation

	Results
	FDA Convergence Test
	Single Galaxy Dynamics
	Galaxy Collisions

	Discussion & Conclusion

